正版现货 计算机视觉算法与应用 艾海舟 兴军亮 计算机视觉图像处理 大学教材 清华大学出版社 辅导用书 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线

正版现货 计算机视觉算法与应用 艾海舟 兴军亮 计算机视觉图像处理 大学教材 清华大学出版社 辅导用书精美图片
》正版现货 计算机视觉算法与应用 艾海舟 兴军亮 计算机视觉图像处理 大学教材 清华大学出版社 辅导用书电子书籍版权问题 请点击这里查看《

正版现货 计算机视觉算法与应用 艾海舟 兴军亮 计算机视觉图像处理 大学教材 清华大学出版社 辅导用书书籍详细信息

  • ISBN:9787302269151
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2012-1
  • 页数:866
  • 价格:119.80
  • 纸张:胶版纸
  • 装帧:平装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-19 20:37:42

内容简介:

《计算机视觉——算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。本书从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述。作者还运用统计模型来分析和运用严格的工程方法来解决这些问题。

本书作为本科生和研究生“计算机视觉”课程的理想教材,适合计算机和电子工程专业学生使用,重点介绍现实中行之有效的基本技术,通过大量应用和练习来鼓励学生大胆创新。此外,本书的精心设计和编排,使其可以作为计算机视觉领域中一本独特的基础技术参考和最新研究成果文献。


书籍目录:

目 录

第1章 概述

1

1.1 什么是计算机视觉?

2

1.2 简史

8

1.3 本书概述

16

1.4 课程大纲样例

21

1.5 标记法说明

22

1.6 扩展阅读

22

第2章 图像形成

25

2.1 几何基元和变换

26

2.1.1 几何基元

26

2.1.2 2D变换

29

2.1.3 3D变换

32

2.1.4 3D旋转

33

2.1.5 3D到2D投影

37

2.1.6 镜头畸变

46

2.2 光度测定学的图像形成

47

2.2.1 照明

48

2.2.2 反射和阴影

49

2.2.3 光学

54

2.3 数字摄像机

57

2.3.1 采样与混叠

60

2.3.2 色彩

63

2.3.3 压缩

71

2.4 补充阅读

72

2.5 习题

73

第3章 图像处理

77

3.1 点算子

78

3.1.1 像素变换

79

3.1.2 彩色变换

81

3.1.3 合成与抠图

81

3.1.4 直方图均衡化

83

3.1.5 应用:色调调整

86

3.2 线性滤波

86

3.2.1 可分离的滤波

89

3.2.2 线性滤波示例

90

3.2.3 带通和导向滤波器

91

3.3 更多的邻域算子

95

3.3.1 非线性滤波

95

3.3.2 形态学

99

3.3.3 距离变换

100

3.3.4 连通量

101

3.4 傅里叶变换

102

3.4.1 傅里叶变换对

105

3.4.2 二维傅里叶变换

107

3.4.3 维纳滤波

108

3.4.4 应用:锐化,模糊

和去噪

111

3.5 金字塔与小波

111

3.5.1 插值

112

3.5.2 降采样

114

3.5.3 多分辨率表达

116

3.5.4 小波

119

3.5.5 应用:图像融合

123

3.6 几何变换

125

3.6.1 参数化变换

125

3.6.2 基于网格的卷绕

131

3.6.3 应用:基于特征的变形

133

3.7 全局优化

133

3.7.1 正则化

134

3.7.2 马尔科夫随机场

138

3.7.3 应用:图像的恢复

147

3.8 补充阅读

147

3.9 习题

149

第4章 特征检测与匹配

157

4.1 点和块

159

4.1.1 特征检测器

160

4.1.2 特征描述子

169

4.1.3 特征匹配

172

4.1.4 特征跟踪

179

4.1.5 应用:表演驱动的动画

181

4.2 边缘

182

4.2.1 边缘检测

182

4.2.2 边缘连接

187

4.2.3 应用:边缘编辑和增强

189

4.3 线条

190

4.3.1 逐次近似

191

4.3.2 Hough变换

191

4.3.3 消失点

194

4.3.4 应用:矩形检测

196

4.4 扩展阅读

197

4.5 习题

198

第5章 分割

205

5.1 活动轮廓

206

5.1.1 蛇行

207

5.1.2 动态蛇行和

CONDENSATION

211

5.1.3 剪刀

214

5.1.4 水平集

215

5.1.5 应用:轮廓跟踪和

转描机

217

5.2 分裂与归并

218

5.2.1 分水岭

218

5.2.2 区域分裂(区分式聚类)

219

5.2.3 区域归并(凝聚式聚类)

219

5.2.4 基于图的分割

219

5.2.5 概率聚集

220

5.3 均值移位和模态发现

221

5.3.1 k-均值和高斯混合

222

5.3.2 均值移位

224

5.4 规范图割

227

5.5 图割和基于能量的方法

230

5.6 补充阅读

234

5.7 习题

235

第6章 基于特征的配准

237

6.1 基于2D和3D特征的配准

238

6.1.1 使用最小二乘的

2D配准

238

6.1.2 应用:全景图

240

6.1.3 迭代算法

241

6.1.4 鲁棒最小二乘

和RANSAC

243

6.1.5 3D配准

245

6.2 姿态估计

246

6.2.1 线性算法

246

6.2.2 迭代算法

248

6.2.3 应用:增强现实

249

6.3 几何内参数标定

250

6.3.1 标定模式

250

6.3.2 消失点

252

6.3.3 应用:单视图测量学

253

6.3.4 旋转运动

254

6.3.5 径向畸变

256

6.4 补充阅读

257

6.5 习题

258

第7章 由运动到结构

263

7.1 三角测量

264

7.2 二视图由运动到结构

266

7.2.1 投影(未标定的)重建

270

7.2.2 自标定

271

7.2.3 应用:视图变形

273

7.3 因子分解

274

7.3.1 透视与投影因子分解

276

7.3.2 应用:稀疏3D模型

提取

277

7.4 光束平差法

278

7.4.1 挖掘稀疏性

280

7.4.2 应用:匹配运动和增强

现实

282

7.4.3 不确定性和二义性

283

7.4.4 应用:由因特网照片

重建

284

7.5 限定结构和运动

287

7.5.1 基于线条的方法

287

7.5.2 基于平面的方法

288

7.6 补充阅读

289

7.7 习题

290

第8章 稠密运动估计

293

8.1 平移配准

294

8.1.1 分层运动估计

297

8.1.2 基于傅里叶的配准

298

8.1.3 逐次求精

300

8.2 参数化运动

305

8.2.1 应用:视频稳定化

308

8.2.2 学到的运动模型

308

8.3 基于样条的运动

309

8.4 光流

312

8.4.1 多帧运动估计

315

8.4.2 应用:视频去噪

316

8.4.3 应用:去隔行扫描

316

8.5 层次运动

317

8.5.1 应用:帧插值

319

8.5.2 透明层和反射

320

8.6 补充阅读

321

8.7 习题

322

第9章 图像拼接

327

9.1 运动模型

329

9.1.1 平面透视运动

329

9.1.2 应用:白板和文档扫描

330

9.1.3 旋转全景图

331

9.1.4 缝隙消除

333

9.1.5 应用:视频摘要和压缩

334

9.1.6 圆柱面和球面坐标

335

9.2 全局配准

338

9.2.1 光束平差法

338

9.2.2 视差消除

341

9.2.3 认出全景图

343

9.2.4 直接配准和基于特征的

?配准

345

9.3 合成

346

9.3.1 合成表面的选择

346

9.3.2 像素选择和加权

(去虚影)

348

9.3.3 应用:照片蒙太奇

352

9.3.4 融合

353

9.4 补充阅读

355

9.5 习题

356

第10章 计算摄影学

359

10.1 光度学标定

361

10.1.1 辐射度响应函数

362

10.1.2 噪声水平估计

363

10.1.3 虚影

364

10.1.4 光学模糊(空间响应)

估计

365

10.2 高动态范围成像

368

10.2.1 色调映射

374

10.2.2 应用:闪影术

380

10.3 超分辨率和模糊去除

381

10.3.1 彩色图像去马赛克

385

10.3.2 应用:彩色化

387

10.4 图像抠图和合成

388

10.4.1 蓝屏抠图

389

10.4.2 自然图像抠图

391

10.4.3 基于优化的抠图

394

10.4.4 烟、阴影和闪抠图

396

10.4.5 视频抠图

397

10.5 纹理分析与合成

398

10.5.1 应用:空洞填充

与修图

400

10.5.2 应用:非真实感绘制

401

10.6 补充阅读

403

10.7 习题

404

第11章 立体视觉对应

409

11.1 极线几何学

412

11.1.1 矫正

412

11.1.2 平面扫描

414

11.2 稀疏对应

416

11.3 稠密对应

418

11.4 局部方法

420

11.4.1 亚像素估计

与不确定性

422

11.4.2 应用:基于立体视觉的

头部跟踪

423

11.5 全局优化

424

11.5.1 动态规划

425

11.5.2 基于分割的方法

427

11.5.3 应用:z-键控与背景

替换

428

11.6 多视图立体视觉

429

11.6.1 体积与3D表面重建

432

11.6.2 由轮廓到形状

436

11.7 补充阅读

438

11.8 习题

439

第12章 3D重建

443

12.1 由X到形状

444

12.1.1 由阴影到形状与光度

测量立体视觉

445

12.1.2 由纹理到形状

447

12.1.3 由聚焦到形状

448

12.2 主动距离获取

449

12.2.1 距离数据归并

451

12.2.2 应用:数字遗产

453

12.3 表面表达

454

12.3.1 表面插值

454

12.3.2 表面简化

455

12.3.3 几何图像

456

12.4 基于点的表达

456

12.5 体积表达

457

12.6 基于模型的重建

459

12.6.1 建筑结构

459

12.6.2 头部和人脸

461

12.6.3 应用:脸部动画

463

12.6.4 完整人体建模与跟踪

465

12.7 恢复纹理映射与反照率

469

12.7.1 估计BRDF

470

12.7.2 应用:3D摄影学

471

12.8 补充阅读

472

12.9 习题

473

第13章 基于图像的绘制

477

13.1 视图插值

478

13.1.1 视图相关的纹理映射

480

13.1.2 应用:照片游览

481

13.2 层次深度图像

482

13.3 光场与发光图

484

13.3.1 非结构化发光图

487

13.3.2 表面光场

488

13.3.3 应用:同心拼图

489

13.4 环境影像形板

490

13.4.1 更高维光场

491

13.4.2 从建模到绘制

492

13.5 基于视频的绘制

493

13.5.1 基于视频的动画

493

13.5.2 视频纹理

494

13.5.3 应用:图片动画

497

13.5.4 3D视频

497

13.5.5 应用:基于视频的

游览

499

13.6 补充阅读

501

13.7 习题

503

第14章 识别

507

14.1 物体检测

509

14.1.1 人脸检测

509

14.1.2 行人检测

515

14.2 人脸识别

518

14.2.1 特征脸

518

14.2.2 活动表观与3D形状

模型

525

14.2.3 应用:个人照片收藏

528

14.3 实例识别

529

14.3.1 几何配准

530

14.3.2 大型数据库

531

14.3.3 应用:位置识别

535

14.4 类别识别

537

14.4.1 词袋

539

14.4.2 基于部件的模型

542

14.4.3 基于分割的识别

545

14.4.4 应用:智能照片编辑

548

14.5 上下文与场景理解

550

14.5.1 学习与大型图像收集

552

14.5.2 应用:图像搜索

554

14.6 识别数据库和测试集

555

14.7 补充阅读

559

14.8 习题

562

第15章 结语

567

附录A 线性代数与数值方法

569

A.1 矩阵分解

570

A.1.1 奇异值分解

570

A.1.2 特征值分解

571

A.1.3 QR因子分解

573

A.1.4 乔里斯基分解

574

A.2 线性最小二乘

575

A.3 非线性最小二乘

578

A.4 直接稀疏矩阵方法

579

A.5 迭代方法

580

A.5.1 共轭梯度

581

A.5.2 预处理

582

A.5.3 多重网格

583

附录B 贝叶斯建模与推断

585

B.1 估计理论

586

B.2 最大似然估计与最小二乘

589

B.3 鲁棒统计学

590

B.4 先验模型与贝叶斯推断

591

B.5 马尔科夫随机场

592

B.5.1 梯度下降与模拟退火

594

B.5.2 动态规划

595

B.5.3 置信传播

596

B.5.4 图割

598

B.5.5 线性规划

601

B.6 不确定性估计(误差分析)

602

附录C 补充材料

604

C.1 数据集

605

C.2 软件

607

C.3 幻灯片与讲座

615

C.4 参考文献

615

词汇表

617


作者介绍:

Richard Szeliski博士计算机视觉领域的大师级人物。Szeliski博士在计算机视觉研究方面有25年以上的丰富经验,先后任职干DEC和微软研究院。1996年,他在微软研究院任职期间,提出一种基于运动的全景图像拼接模型,采用L—M算法,通过求图像间的几何变换关系来进行图像匹配。此方法是图像拼接领域的经典算法,Richard Szeliski也因此成为图像拼接领域的奠基人。


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

We also need to understand the image formation process that produced a particular image given a set of lighting conditions, scene geometry, surface properties, and camera optics.


Relative to the distant geometry in the scene, as you snap away, the camera is undergoing a pure rotation, which is equivalent to assuming that all points are very far from the camera, i.e., on the plane at infinity.


According to one well-known story, in 1966, Marvin Minsky at MIT asked his undergraduate student Gerald Jay Sussman to “spend the summer linking a camera to a computer and getting the computer to describe what it saw" (Boden 2006, p. 781). We now know that the problem is slightly more difficult than that.


其它内容:

书籍介绍

《计算机视觉——算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。本书从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述。作者还运用统计模型来分析和运用严格的工程方法来解决这些问题。

本书作为本科生和研究生“计算机视觉”课程的理想教材,适合计算机和电子工程专业学生使用,重点介绍现实中行之有效的基本技术,通过大量应用和练习来鼓励学生大胆创新。此外,本书的精心设计和编排,使其可以作为计算机视觉领域中一本独特的基础技术参考和最新研究成果文献。


书籍真实打分

  • 故事情节:9分

  • 人物塑造:8分

  • 主题深度:8分

  • 文字风格:3分

  • 语言运用:6分

  • 文笔流畅:3分

  • 思想传递:9分

  • 知识深度:3分

  • 知识广度:8分

  • 实用性:3分

  • 章节划分:7分

  • 结构布局:9分

  • 新颖与独特:9分

  • 情感共鸣:7分

  • 引人入胜:9分

  • 现实相关:8分

  • 沉浸感:4分

  • 事实准确性:4分

  • 文化贡献:9分


网站评分

  • 书籍多样性:9分

  • 书籍信息完全性:9分

  • 网站更新速度:8分

  • 使用便利性:8分

  • 书籍清晰度:6分

  • 书籍格式兼容性:4分

  • 是否包含广告:6分

  • 加载速度:8分

  • 安全性:5分

  • 稳定性:8分

  • 搜索功能:9分

  • 下载便捷性:5分


下载点评

  • 排版满分(373+)
  • 超值(347+)
  • 可以购买(535+)
  • 无漏页(292+)
  • 四星好评(506+)
  • 二星好评(144+)
  • 强烈推荐(580+)

下载评价

  • 网友 仰***兰: ( 2024-12-31 07:34:47 )

    喜欢!很棒!!超级推荐!

  • 网友 曹***雯: ( 2025-01-08 17:30:59 )

    为什么许多书都找不到?

  • 网友 谭***然: ( 2025-01-08 15:29:16 )

    如果不要钱就好了

  • 网友 师***怀: ( 2025-01-17 08:33:47 )

    好是好,要是能免费下就好了

  • 网友 国***芳: ( 2024-12-23 08:10:50 )

    五星好评

  • 网友 訾***晴: ( 2025-01-11 07:40:10 )

    挺好的,书籍丰富

  • 网友 索***宸: ( 2025-01-06 00:15:45 )

    书的质量很好。资源多

  • 网友 丁***菱: ( 2025-01-03 10:28:24 )

    好好好好好好好好好好好好好好好好好好好好好好好好好

  • 网友 辛***玮: ( 2024-12-26 17:56:45 )

    页面不错 整体风格喜欢

  • 网友 瞿***香: ( 2024-12-21 15:05:32 )

    非常好就是加载有点儿慢。

  • 网友 马***偲: ( 2025-01-18 00:31:41 )

    好 很好 非常好 无比的好 史上最好的


随机推荐